1. A 15 000-N car on a hydraulic lift rests on a cylinder with a piston of radius 0.20 m. If a connecting cylinder with a piston of 0.040-m radius is driven by compressed air, what force must be applied to this smaller piston in order to lift the car?

Here is the answer for the question – 1. A 15 000-N car on a hydraulic lift rests on a cylinder with a piston of radius 0.20 m. If a connecting cylinder with a piston of 0.040-m radius is driven by compressed air, what force must be applied to this smaller piston in order to lift the car?. You’ll find the correct answer below

1. A 15 000-N car on a hydraulic lift rests on a cylinder with a piston of radius 0.20 m. If a connecting cylinder with a piston of 0.040-m radius is driven by compressed air, what force must be applied to this smaller piston in order to lift the car?

The Correct Answer is

600 N

Reason Explained

600 N is correct for 1. A 15 000-N car on a hydraulic lift rests on a cylinder with a piston of radius 0.20 m. If a connecting cylinder with a piston of 0.040-m radius is driven by compressed air, what force must be applied to this smaller piston in order to lift the car?

Thankyou for using answerout. We hope you get all your answers here. If you have any special questions, you can comment to ask us.

See also  Select the highest energy form of adenosine from the following images. Adenosine triphosphate (ATP) is the high-energy form of adenosine because it contains the most phosphate groups (three). This molecule fuels many different endergonic (energy-requiring) enzymatic processes in biological organisms. ATP molecules diffuse or are transported to the place where the energy is needed and deliver chemical energy from the breaking of their phosphate bonds.

Leave a Comment